Parametric Linear Complementarity Problems

نویسنده

  • Klaus Tammer
چکیده

We study linear complementarity problems depending on parameters in the right-hand side and (or) in the matrix. For the case that all elements of the right-hand side are independent parameters we give a new proof for the equivalence of three diierent important local properties of the corresponding solution set map in a neighbourhood of an element of its graph. For one-and multiparametric problems this equivalence does not hold and the corresponding graph may have a rather complicate structure. But we are able to show that for a generic class of linear complementarity problems depending linearly on only one real parameter the situation is much more easier.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function

In this paper, an interior-point algorithm  for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...

متن کامل

Improved infeasible-interior-point algorithm for linear complementarity problems

We present a modified version of the infeasible-interior- We present a modified version of the infeasible-interior-point algorithm for monotone linear complementary problems introduced by Mansouri et al. (Nonlinear Anal. Real World Appl. 12(2011) 545--561). Each main step of the algorithm consists of a feasibility step and several centering steps. We use a different feasibility step, which tar...

متن کامل

On monotonicity in parametric linear complementarity problems

This paper generalizes the answers that were given by R.W. Cottle to questions that were originally raised by G. Maier. Essentially, we give necessary and sufficient conditions for some notions of monotonicity of solutions for the parametric linear complementarity problem. Our proofs are direct ones and not algorithmic, as Cottle's proofs are, and also cover a broader class of matrices.

متن کامل

Global Solution to Parametric Complementarity Constrained Programs and Applications in Optimal Parameter Selection By

This thesis contains five chapters. The notations, terminologies, definitions and numbering of equations, theorems and algorithms are independent in each chapter. Chapter 1 provides a fundamental introduction and contextual discussions to provide a unified theme for the subsequent chapters into a complete work. Chapters 2, 3 and 4 are arranged for ease of reading and understanding separately. F...

متن کامل

A Quadratically Convergent Interior-Point Algorithm for the P*(κ)-Matrix Horizontal Linear Complementarity Problem

In this paper, we present a new path-following interior-point algorithm for -horizontal linear complementarity problems (HLCPs). The algorithm uses only full-Newton steps which has the advantage that no line searchs are needed. Moreover, we obtain the currently best known iteration bound for the algorithm with small-update method, namely, , which is as good as the linear analogue.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996